![]() Energetické úspory v souvislostech
Zjednodušený výpočtový postup energetického hodnocení solárních soustav (TNI 73 0302) - Výpočetní pomůcka Datum: 31.1.2011 | Autor: doc. Ing. Tomáš Matuška, Ph.D. | Recenzent: Ing. Bořivoj Šourek
Výpočtový postup zohledňující specifika dané solární soustavy: Podstatou zjednodušené bilanční metody je stanovení skutečně využitých zisků solární soustavy Qss,u na základě porovnání teoreticky využitelných tepelných zisků solárních kolektorů Qk,u a celkové potřeby tepla Qp,c, která má být kryta. Celý výpočet lze v podstatě zapsat pro každý měsíc jako Teoreticky využitelné zisky solární soustavy se v jednotlivých měsících stanoví jako kde η0, a1 a a2 - konstanty křivky účinnosti solárního kolektoru; tk,m - střední denní teplota teplonosné kapaliny v solárním kolektoru, ve °C; te,s - střední venkovní teplota v době slunečního svitu, ve °C; GT,m - střední denní sluneční ozáření pro daný sklon a orientaci, ve W/m2; HT,den - skutečná denní dávka slunečního ozáření, v kWh/(m2den); n - počet dní v měsíci; Ak - plocha apertury solárních kolektorů, v m2; p - hodnota srážky z tepelných zisků solárních kolektorů vlivem tepelných ztrát solární soustavy (rozvody, solární zásobník) Bilanční metoda je fyzikálně zřetelným postupem energetického hodnocení solárních soustav, která zohledňuje:
sklon a orientace kolektoru;
tepelné ztráty solární soustavy, resp. jejich podíl z teoretických "čistých" zisků solárních kolektorů Qk; potřebu tepla v dané aplikaci a její vliv na využitelnost tepelných zisků solární soustavy
| Odkazy: Výpočetní nástroj pro bilancování solárních fotovoltaických systémů NZÚ Výpočetní nástroj pro bilancování solárních termických systémů NZÚ
ad 1) TNI používá jednotné klimatické údaje (typická lokalita město), aby hodnocení solární soustavy bylo jednotné a snadno ověřitelné. Snahou výpočtového postupu není přiblížit se co nejblíže skutečnosti v daném místě (nelze zjednodušenými metodami), ale věrohodně posoudit vhodnost návrhu plochy a typu solárních kolektorů z hlediska využitelnosti jejich zisků. ad 2) TNI 73 0302 připouští pro výpočet použití křivky účinnosti vztažené k ploše apertury solárního kolektoru v souladu s ČSN EN 12975-2 [2]. Plocha apertury je jednoduše změřitelná bez rozebrání solárního kolektoru a je evropskými zkušebními ústavy používána v naprosté většině případů jako referenční plocha solárních kolektorů. Výpočtový postup neuvažuje křivku modifikátoru úhlu dopadu (IAM) konkrétního kolektoru, která stanovuje vliv úhlu dopadu slunečního záření na vlastní účinnost solárního kolektoru. Má to dva důvody: a) zkušenost ukazuje, že dodavatelé solárních kolektorů křivku IAM nemají k dispozici (změřenou), případně projektanti a auditoři ani nevědí co to je; b) jedním z cílů výpočtové metody byla snaha o zjednodušení množství potřebných vstupních údajů. Tato skutečnost znevýhodňuje kvalitní trubkové vakuové solární kolektory s válcovým absorbérem. Na druhé straně nelze paušálně stanovit, že všechny trubkové kolektory budou mít ve výpočtu zvýšeny zisky např. o 20 % vlivem svých optických vlastností, protože u řady z nich to jednoduše neplatí. Přínos optických vlastností trubkových kolektorů je velmi závislý na konkrétní geometrii jak vakuových trubek (rozteč), tak reflektoru (tvar, vzdálenost od trubek). Některé trubkové vakuové kolektory jsou svými optickými vlastnostmi i horší než kolektory ploché [3]. Obecně je proto vliv úhlu dopadu (spolu s jinými vlivy) na účinnost zahrnut v jednotném korekčním součiniteli 0,9 v rovnici (2), který snižuje zisky vypočtené z křivky účinnosti kolektoru získané za laboratorních podmínek zkoušky [2]. ad 3) TNI umožňuje hodnotit solární soustavy s kolektory o sklonu 0 až 90° a orientaci ±45° od jihu. Pro vyšší azimuty již zjednodušený výpočet zisků není platný, neboť vliv středního měsíčního úhlu dopadu na účinnost kolektoru je mnohem vyšší než zohledňuje korekční činitel 0,9 (viz komentář k bodu 2). ad 4) TNI zohledňuje typ aplikace a dimenzování solární soustavy, které určují provozní podmínky. Obecně platí, že čím vyšší solární pokrytí, tím vyšší přebytky nevyužitelné energie v letním období a tím vyšší průměrná teplota v kolektorech během roku. Průměrná provozní teplota (roční, měsíční) v solární soustavě je ovlivňována řadou faktorů (velikost zásobníku, dimenzování výkonu kolektorů vůči odběru tepla a velikosti zásobníku, úroveň tepelné izolace) a je velmi obtížné jednoduchým způsobem zohlednit různé případy a kombinace. Výpočet nedokáže zohlednit extrémní předimenzování plochy solárních kolektorů. TNI zavádí provozní teplotu jako paušální hodnotu v závislosti na typu a pokrytí solární soustavy a pro jednoduchost výpočtu nezohledňuje změnu provozní teploty během roku (v zimě nižší hodnoty, v létě vyšší). ad 5) Tepelné ztráty solární soustavy (rozvodů, solárního zásobníku) snižují využitelné zisky solární soustavy. Zatímco u malých soustav, např. pro rodinné domy jsou tepelné ztráty značné v porovnání s energií produkovanou kolektory (až 40 % i u dobře zaizolovaných soustav), u velkoplošných solárních soustav se poměr tepelných ztrát vůči teoreticky využitelným ziskům kolektorů výrazně zmenšuje (< 5 %). Nicméně, relativní rozdíl mezi tepelnými ztrátami soustavy s velmi dobrým izolačním standardem (např. více než 20 mm izolace na potrubí 22x1) a špatným izolačním standardem (např. 10 mm izolace na potrubí 22x1) je cca do 20 %, proto jsou použity paušální hodnoty srážky ze zisků vlivem tepelných ztrát bez ohledu na konkrétní podmínky zaizolování potrubí a zásobníku. ad 6) TNI uvádí postup, jak stanovit potřebu tepla pro přípravu teplé vody a vytápění, včetně zjednodušeného výpočtu souvisejících tepelných ztrát, které je možné solárními zisky pokrýt. V případě přípravy teplé vody TNI vychází z reálných hodnot spotřeb podle [4] potvrzených měřením na řadě instalací v ČR. V běžných aplikacích přípravy teplé vody nelze použít hodnoty spotřeby teplé vody z normy ČSN 06 0320 [5]. Návrhové hodnoty uvedené v normě, např. 82 l/(os den) pro obytné budovy, jsou určeny pro návrh zdroje tepla a objemu zásobníku teplé vody pro bezpečné zajištění přípravy teplé vody v daném objektu a jsou ze své podstaty výrazně vyšší než průměrné dosahované (cca dvojnásobné). V případě výpočtu potřeby tepla na vytápění při bilancování kombinovaných solárních soustav metodika doporučuje využít výpočtu provedeného v souladu s ČSN EN ISO 13790 [6], pokud je k dispozici. Pokud k dispozici není, TNI umožňuje s ohledem na časovou náročnost výpočtu a požadavky na detailní vstupní údaje použít zjednodušenou denostupňovou metodu pro přibližné stanovení potřeby tepla na vytápění v určitém období (měsíc). Pracnost výpočtu podle ČSN EN ISO 13790 je neúměrná vlivu přesnosti stanovení potřeby na výsledky bilance využitelných tepelných zisků solární kombinované soustavy. Výsledky výpočtu podle TNI jsou celkové roční využitelné (skutečně využité) zisky solární soustavy Qss,u, solární podíl f a měrné tepelné zisky solární soustavy qss,u. |