Porovnání solárního fototermického a fotovoltaického ohřevu vody Datum: 21.4.2014 | Autor: doc. Ing. Tomáš Matuška, Ph.D., Ing. Bořivoj Šourek, Ph.D., Univerzitní centrum energeticky efektivních budov, ČVUT v Praze Pro porovnání technologií přípravy teplé vody za srovnatelných podmínek odběru tepla a klimatických podmínek byly vytvořeny podrobné matematické modely pro fotovoltaický systém a fototermický systém pro přípravu teplé vody v simulačním softwaru TRNSYS [3]. Byly zkoumány následující varianty: fotovoltaický ohřev (bez sledovače maximálního výkonu, MPPT off); fotovoltaický ohřev (se sledovačem maximálního výkonu, MPPT on); fototermický ohřev – solární tepelná soustava. Profil odběru teplé vody použit Pro všechny varianty systémů bylo uvažováno využití sluneční energie pouze pro samostatný ohřev vody. Pro porovnání byly zvoleny reálné systémy solárního ohřevu v konfiguraci (počtu kolektorů), která je nabízena na trhu jako vzájemná alternativa pro rodinu se 3 až 4 členy. Všechny varianty ohřevu využívají solární zásobník teplé vody o objemu 200 l s denní ztrátou tepla 1,4 kWh/den, od stejného výrobce. Přestože součástí všech uvažovaných solárních zásobníků teplé vody jsou elektrická topná tělesa napojená na elektrickou síť, pro účely tohoto porovnání nebylo uvažováno jejich použití jako dodatkového zdroje tepla. Množství potřebné dodatkové energie (energie na dohřev vody) bylo stanoveno na základě odebíraného aktuálního průtoku a rozdílu mezi požadovanou teplotou a teplotou vody dosaženou na výstupu ze zásobníku. Pro všechny varianty byla uvažována maximální teplota v zásobníku teplé vody 85 °C. Byly uvažovány jak tepelné ztráty zásobníku, tak jeho tepelné zisky v případě, že teplota v zásobníku je nižší než teplota okolí (15 °C). Pro modelování zásobníku v TRNSYS byl zvolen pokročilý model type340, který umožňuje modelovat jak nádrže, tak zásobníky s elektrickými topnými tělesy, tak s výměníky tepla. Fotovoltaický systém nabízený na trhu pro 200 l zásobník je tvořen Napětí při maximálním výkonu 29,8 V Proud při maximálním výkonu 8,39 A Napětí naprázdno Voc 36,9 V Napětí nakrátko Isc 9,09 A NOCT 45 °C Teplotní koeficient napětí Voc −0,36 %/K Teplotní koeficient proudu Isc 0,06 %/K Účinnost FV panelu 15,1 %
Rozdíl mezi fotovoltaickými systémy ohřevu spočívá v použití sledovače maxima výkonu FV systému. Sledovač (Maximum Power Point Tracker) umožňuje výrobu elektrické energie z FV panelů udržet na maximální produkci během proměnlivých klimatických podmínek. Největší vliv má sluneční ozáření, které ovlivňuje generovaný elektrický proud a teplota FV článků, která ovlivňuje napětí na panelech. U systému bez použití MPPT je napětí na FV panelech závislé na generovaném proudu a zátěži (odporu elektrického topného tělesa, v modelu uvažován 25 Ω). Neřízenou zátěží se FV panel v provozu dostává mimo optimální bod výkonového maxima (součin proudu a napětí) a celková produkce elektrické energie je nižší než při použití MPPT. Pro FV panely byla uvažována změna výkonu panelu s úhlem dopadu slunečního záření (optická charakteristika). Pro celý systém bylo počítáno s elektrickými ztrátami na úrovni 2 %. Ve výpočtu nebylo uvažováno s dlouhodobou degradací výkonu FV panelů, běžně uvažovanou mezi 0,5 a 1 % ročně. Schéma fototermického (FT) systému pro ohřev vody Fototermický systém byl uvažován se dvěma plochými solárními tepelnými kolektory s celkovou plochou apertury 4,5 m2. Pro solární kolektory byla uvažována optická charakteristika uvedená v protokolu ke zkoušce kolektoru, zjednodušeně vyjádřená modifikátorem pro úhel dopadu slunečního záření 50°. Průtok okruhem solárních kolektorů byl uvažován 50 l/h.m2 plochy kolektorů. Rozvod okruhu solárních kolektorů je z Cu potrubí 18×1 mm izolovaného tepelnou izolací tl. 19 mm. Délka kolektorového okruhu je celkem 40 m. Pro stanovení reálných přínosů solární tepelné soustavy byla do provozní spotřeby elektrické energie zahrnuta i spotřeba na pohon oběhového čerpadla s příkonem v pracovním bodě 25 W. Výměník tepla solárního okruhu v zásobníku teplé vody má plochu 1 m2 s referenčním součinitelem prostupu tepla U = 170 W/m2K. V modelu zásobníku je dále uvažován vliv průtoku, rozdílu teplot a střední teploty v okolo výměníku na součinitel prostupu tepla.
Lineární součinitel tepelné ztráty 3,59 W/m2K Kvadratický součinitel tepelné ztráty 0,011 W/m2K2 Modifikátor úhlu dopadu pro 50° 0,95
Z grafu měsíčních hodnot je patrné nejen, že solární termické kolektory produkují zisk i v zimních měsících, ale i skutečnost, že tento tepelný zisk je vyšší než přínos FV systému.
FV MPPT off 1964 803 29 FV MPPT on 1442 1325 48 FT 1090 1677 61 Je možné si všimnout velkého rozdílu mezi produkcí FV systému se sledovačem výkonového maxima a bez něj. Vlivem proměnlivosti slunečního záření a teploty FV panelů dosahuje rozdíl v produkci elektrické energie 40 %. Obecně lze říci, že systémy bez sledovače výkonu jsou velmi neúčinné. Na druhé straně fototermický systém pro přípravu teplé vody s podílem krytí potřeby tepla okolo 60 % dosahuje běžně předpokládaných měrných zisků na úrovni
Pořizovací náklady Systém Materiál[Kč] Montáž[Kč] Celkem[Kč] FV MPPT off 60 000 5 000 65 000 FV MPPT on 85 000 5 000 90 000 FT 70 000 15 000 85 000 Bylo provedeno ekonomické porovnání všech variant ohřevu vody. Na základě konkrétních nabídek na dodávku fototermických a fotovoltaických systémů byly vyhodnoceny pořizovací náklady, včetně montáže. Všechny náklady jsou uváděny bez DPH. Materiál pro FV systém obsahuje 8 ks FV polykrystalických panelů se špičkovým výkonem 250 W, nosné konstrukce na střechu, kabeláž, elektrické ochrany a zásobník teplé vody 200 l s DC a AC el. topným tělesem. Ve variantě se sledovačem (MPPT on) je součástí cenové specifikace ještě sledovač výkonového maxima s cenou 25 000 Kč. Materiál pro FT systém obsahuje 2 ks plochých solárních kolektorů s výše uvedenou specifikací parametrů, nosné konstrukce pro kolektory na střechu, potrubí a tepelnou izolaci v délce 40 m, regulátor, čerpadlovou skupinu, včetně expanzní nádoby, solární kapalinu, drobný instalační materiál a zásobník teplé vody 200 l s vestavěným výměníkem a AC el. topným tělesem.
Pro vyhodnocení ekonomické návratnosti jednotlivých variant byla uvažována průměrná cena elektrické energie 2,5 Kč/kWh s tempem ročního růstu 5 %. Diskont, jako cena investovaných peněz do solárního systému, byl uvažován na úrovni 0,1 % za předpokladu použití vlastních finančních prostředků uložených v běžné bance na běžném účtu. Pro solární fototermický systém byla navíc uvažována každých 5 let výměna solární kapaliny (průměrný náklad 3000 Kč) a zahrnuta spotřeba elektrické energie na provoz čerpadel (cca 50 kWh/rok).
Fotovoltaický systém napojený přímo do DC elektrického topného tělesa bez sledovače výkonového maxima dodá o 40 % méně energie než FV systém se sledovačem a poloviční množství energie oproti srovnatelnému fototermickému systému; fotovoltaické systémy ohřevu vody jsou ekonomicky nevýhodnější oproti srovnatelnému fototermickému systému; k hodnocení montážně sice jednoduchého FV systému, avšak z hlediska výpočtu přínosů složitého kvůli nutnosti zahrnutí vlivů všech podmínek provozu FV panelu, je nutně použít detailní modely postavené na elektrických vlastnostech panelů. |