Energeticky audit
Energetické úspory v souvislostech




Porovnání solárního fototermického a fotovoltaického ohřevu vody

Datum: 21.4.2014 | Autor: doc. Ing. Tomáš Matuška, Ph.D., Ing. Bořivoj Šourek, Ph.D., Univerzitní centrum energeticky efektivních budov, ČVUT v Praze


Pro porovnání technologií přípravy teplé vody za srovnatelných podmínek odběru tepla a klimatických podmínek byly vytvořeny podrobné matematické modely pro fotovoltaický systém a fototermický systém pro přípravu teplé vody v simulačním softwaru TRNSYS [3]. Byly zkoumány následující varianty:


fotovoltaický ohřev (bez sledovače maximálního výkonu, MPPT off);

fotovoltaický ohřev (se sledovačem maximálního výkonu, MPPT on);

fototermický ohřev – solární tepelná soustava.


Profil odběru teplé vody použitObr. 1 – Profil odběru teplé vody použitý při simulaciý při simulaci

Pro všechny varianty systémů bylo uvažováno využití sluneční energie pouze pro samostatný ohřev vody.
Odběr teplé vody byl uvažován 160 l/den.
Požadovaná teplota teplé vody byla 55 °C, teplota studené vody 10 °C. Denní profil odběru teplé vody byl použit v souladu s evropskými normami na obr. 1.
Celková potřeba tepla na přípravu teplé vody byla uvažována 2767 kWh/rok. Klimatické údaje použité v simulační analýze byly převzaty z typického meteorologického roku TMY (Meteonorm) pro Prahu. Klimatický údaje TMY vykazují relativně konzervativní
úhrn dopadající sluneční energie na vodorovnou rovinu 998 kWh/m2.rok s roční průměrnou teplotou venkovního vzduchu 8,9 °C.
Solární kolektory uvažované ve všech variantách mají sklon 45° a orientaci k jihu.


Pro porovnání byly zvoleny reálné systémy solárního ohřevu v konfiguraci (počtu kolektorů), která je nabízena na trhu jako vzájemná alternativa pro rodinu se 3 až 4 členy. Všechny varianty ohřevu využívají solární zásobník teplé vody o objemu 200 l s denní ztrátou tepla 1,4 kWh/den, od stejného výrobce. Přestože součástí všech uvažovaných solárních zásobníků teplé vody jsou elektrická topná tělesa napojená na elektrickou síť, pro účely tohoto porovnání nebylo uvažováno jejich použití jako dodatkového zdroje tepla. Množství potřebné dodatkové energie (energie na dohřev vody) bylo stanoveno na základě odebíraného aktuálního průtoku a rozdílu mezi požadovanou teplotou a teplotou vody dosaženou na výstupu ze zásobníku. Pro všechny varianty byla uvažována maximální teplota v zásobníku teplé vody 85 °C. Byly uvažovány jak tepelné ztráty zásobníku, tak jeho tepelné zisky v případě, že teplota v zásobníku je nižší než teplota okolí (15 °C). Pro modelování zásobníku v TRNSYS byl zvolen pokročilý model type340, který umožňuje modelovat jak nádrže, tak zásobníky s elektrickými topnými tělesy, tak s výměníky tepla.


Fotovoltaický systém nabízený na trhu pro 200 l zásobník je tvořen
8 polykrystalickými panely o špičkovém výkonu 8 × 250 Wp, sériově zapojenými do elektrického DC topného tělesa o výkonu 2 kW.
Celkový špičkový výkon FV systému je 2 kWp při celkové ploše panelů 13,2 m2.
Pro modelování funkce FV panelu byl zvolen 5parametrový model (type180) založený na ekvivalentním jednodiodovém okruhu. Pro definici FV panelu jsou vyžadovány základní elektrické charakteristiky panelu: napětí a proud při maximáním výkonu (STC, 1000 W/m2, 25 C), napětí naprázdno, proud nakrátko, proudový a napěťový teplotní koeficient a teplota při standardních provozních podmínkách (NOCT, 800 W/m2, 20 °C, 1 m/s).
Souhrnné parametry použitého FV panelu.
Maximální výkon                             250 W

Napětí při maximálním výkonu     29,8 V

Proud při maximálním výkonu      8,39 A

Napětí naprázdno Voc                    36,9 V

Napětí nakrátko Isc                        9,09 A

NOCT                                               45 °C

Teplotní koeficient napětí Voc     −0,36 %/K

Teplotní koeficient proudu Isc     0,06 %/K

Účinnost FV panelu                       15,1 %


Schéma FV systému pro ohřev vody


Rozdíl mezi fotovoltaickými systémy ohřevu spočívá v použití sledovače maxima výkonu FV systému. Sledovač (Maximum Power Point Tracker) umožňuje výrobu elektrické energie z FV panelů udržet na maximální produkci během proměnlivých klimatických podmínek. Největší vliv má sluneční ozáření, které ovlivňuje generovaný elektrický proud a teplota FV článků, která ovlivňuje napětí na panelech. U systému bez použití MPPT je napětí na FV panelech závislé na generovaném proudu a zátěži (odporu elektrického topného tělesa, v modelu uvažován 25 Ω). Neřízenou zátěží se FV panel v provozu dostává mimo optimální bod výkonového maxima (součin proudu a napětí) a celková produkce elektrické energie je nižší než při použití MPPT.


Pro FV panely byla uvažována změna výkonu panelu s úhlem dopadu slunečního záření (optická charakteristika). Pro celý systém bylo počítáno s elektrickými ztrátami na úrovni 2 %. Ve výpočtu nebylo uvažováno s dlouhodobou degradací výkonu FV panelů, běžně uvažovanou mezi 0,5 a 1 % ročně.

Schéma fototermického (FT) systému pro ohřev vody

Fototermický systém byl uvažován se dvěma plochými solárními tepelnými kolektory s celkovou plochou apertury 4,5 m2. Pro solární kolektory byla uvažována optická charakteristika uvedená v protokolu ke zkoušce kolektoru, zjednodušeně vyjádřená modifikátorem pro úhel dopadu slunečního záření 50°. Průtok okruhem solárních kolektorů byl uvažován 50 l/h.m2 plochy kolektorů. Rozvod okruhu solárních kolektorů je z Cu potrubí 18×1 mm izolovaného tepelnou izolací tl. 19 mm. Délka kolektorového okruhu je celkem 40 m. Pro stanovení reálných přínosů solární tepelné soustavy byla do provozní spotřeby elektrické energie zahrnuta i spotřeba na pohon oběhového čerpadla s příkonem v pracovním bodě 25 W. Výměník tepla solárního okruhu v zásobníku teplé vody má plochu 1 m2 s referenčním součinitelem prostupu tepla U = 170 W/m2K. V modelu zásobníku je dále uvažován vliv průtoku, rozdílu teplot a střední teploty v okolo výměníku na součinitel prostupu tepla.


Parametry FT kolektorů použitých v modelu
Optická účinnost                                    0,809

Lineární součinitel tepelné ztráty         3,59 W/m2K

Kvadratický součinitel tepelné ztráty    0,011 W/m2K2

Modifikátor úhlu dopadu pro 50°          0,95


Výsledky
Průběh zisků během roku u všech variant

Obr. 4 – Průběh zisků během roku u všech variant

Z grafu měsíčních hodnot je patrné nejen, že solární termické kolektory produkují zisk i v zimních měsících, ale i skutečnost, že tento tepelný zisk je vyšší než přínos FV systému.
Z hlediska roční bilance je zřejmé, že fototermický systém se dvěma kolektory nabízený na trhu s 200litrovým zásobníkem teplé vody dodá o cca 25 % více energie než srovnatelný FV systém se sledovačem výkonového maxima a více než dvojnásobek oproti FV systému bez sledovače.


Roční výsledky simulace solárního ohřevu
Varianta systému    Energie pro dohřev [kWh]    Solární tepelné zisky[kWh]    Solární podíl [%]

FV MPPT off            1964            803            29

FV MPPT on            1442            1325            48

FT                             1090            1677            61


Je možné si všimnout velkého rozdílu mezi produkcí FV systému se sledovačem výkonového maxima a bez něj. Vlivem proměnlivosti slunečního záření a teploty FV panelů dosahuje rozdíl v produkci elektrické energie 40 %. Obecně lze říci, že systémy bez sledovače výkonu jsou velmi neúčinné.


Na druhé straně fototermický systém pro přípravu teplé vody s podílem krytí potřeby tepla okolo 60 % dosahuje běžně předpokládaných měrných zisků na úrovni
370 kWh/m2rok, a to i přes relativně vysoký podíl tepelných ztrát solární soustavy (potrubí, zásobník) okolo 25 % z energie vyrobené solárními kolektory.


Ekonomika

Pořizovací náklady Systém    Materiál[Kč]    Montáž[Kč]    Celkem[Kč]

FV MPPT off        60 000    5 000    65 000

FV MPPT on        85 000    5 000    90 000

FT                         70 000    15 000    85 000


Bylo provedeno ekonomické porovnání všech variant ohřevu vody. Na základě konkrétních nabídek na dodávku fototermických a fotovoltaických systémů byly vyhodnoceny pořizovací náklady, včetně montáže. Všechny náklady jsou uváděny bez DPH.


Materiál pro FV systém obsahuje 8 ks FV polykrystalických panelů se špičkovým výkonem 250 W, nosné konstrukce na střechu, kabeláž, elektrické ochrany a zásobník teplé vody 200 l s DC a AC el. topným tělesem. Ve variantě se sledovačem (MPPT on) je součástí cenové specifikace ještě sledovač výkonového maxima s cenou 25 000 Kč.


Materiál pro FT systém obsahuje 2 ks plochých solárních kolektorů s výše uvedenou specifikací parametrů, nosné konstrukce pro kolektory na střechu, potrubí a tepelnou izolaci v délce 40 m, regulátor, čerpadlovou skupinu, včetně expanzní nádoby, solární kapalinu, drobný instalační materiál a zásobník teplé vody 200 l s vestavěným výměníkem a AC el. topným tělesem.


Ekonomické porovnání (návratnost) solárního ohřevu vody

Pro vyhodnocení ekonomické návratnosti jednotlivých variant byla uvažována průměrná cena elektrické energie 2,5 Kč/kWh s tempem ročního růstu 5 %. Diskont, jako cena investovaných peněz do solárního systému, byl uvažován na úrovni 0,1 % za předpokladu použití vlastních finančních prostředků uložených v běžné bance na běžném účtu. Pro solární fototermický systém byla navíc uvažována každých 5 let výměna solární kapaliny (průměrný náklad 3000 Kč) a zahrnuta spotřeba elektrické energie na provoz čerpadel (cca 50 kWh/rok).

Z grafu ekonomického srovnání vyplývá celkem zřetelně, že v případě ohřevu vody ani jeden z FV systémů nedosahuje ekonomické efektivity solárního fototermického systému.


Závěr

Fotovoltaický systém napojený přímo do DC elektrického topného tělesa bez sledovače výkonového maxima dodá o 40 % méně energie než FV systém se sledovačem a poloviční množství energie oproti srovnatelnému fototermickému systému;

fotovoltaické systémy ohřevu vody jsou ekonomicky nevýhodnější oproti srovnatelnému fototermickému systému;

k hodnocení montážně sice jednoduchého FV systému, avšak z hlediska výpočtu přínosů složitého kvůli nutnosti zahrnutí vlivů všech podmínek provozu FV panelu, je nutně použít detailní modely postavené na elektrických vlastnostech panelů.